GOVT. DIGVIJAY AUTONOMOUS P.G. COLLEGE RAJNANDGAON (C.G.) ### **FYUP** (Four Year Undergraduate Programme) Course Curriculum FOR B.Sc. BOTANY Semester V and Semester VI SESSION – 2025-26 Approved by Central Board Of Studies & Board Of Studies **DEPARTMENT OF BOTANY** # Govt. Digvijay Autonomous P.G. College, Rajnandgaon, C.G. Bachelor of Science (B.Sc.) Four Years UG Programme (FYUP) **Botany** 3 3 J V うつ **3** 3 J 3 3 ၁ ၁ J) J) •)) # 2025-26 | Year | Sem. | Course | Course Title | Credit | IA | ESE | Max | |--------|---------|-------------|--------------------------|--------|-----|-----|-------| | | | Type | | | N | | Marks | | | | DSC-01 | Elementary Botany | 3+0+0 | 30 | 70 | 100 | | | | DSC-01- | Elementary Botany – | 0+0+1 | 15 | 35 | 50 | | | I Sem. | LAB | LAB | | | | | | | I Sem. | GE-01 | Elementary Botany | 3+0+0 | 30 | 70 | 100 | | | e ii | GE-01- | Elementary Botany – | 0+0+1 | 15 | 35 | 50 | | | | LAB | LAB | | | 2 | | | First | | DSC-02 | Microbes and | 3+0+0 | 30 | 70 | 100 | | Year | | | Thallophyta | | | | | | 1 Cai | | DSC-02- | Microbes and | 0+0+1 | 15 | 35 | 50 | | | | LAB | Thallophyta - LAB | | | | | | | II Sem. | GE-02 | Microbes and | 3+0+0 | 30 | 70 | 100 | | | n sem. | | Thallophyta | | | | | | | | GE-02- | Microbes and | 0+0+1 | 15 | 35 | 50 | | | | LAB | Thallophyta - LAB | | 100 | | | | | | SEC-01 | Gardening and | 0+0+2 | 10 | 40 | 50 | | | | | Floriculture | | | | | | | | DSC-03 | Archegoniate and Fossils | 3+0+0 | 30 | 70 | 100 | | | | DSC-03- | Archegoniate and Fossils | 0+0+1 | 15 | 35 | 50 | | | 6 | LAB | -LAB | | | | | | | III | DSE- 01 | Natural resources and | 3+0+0 | 30 | 70 | 100 | | | Sem. | | management | | | | | | | Sein. | DSE-01- | Natural resources and | 0+0+1 | 15 | 35 | 50 | | | | LAB | management- LAB | | | | II | | | | VAC- 01 | Herbal Plants & Human | 2+0+0 | 10 | 40 | 50 | | Second | | | Health | | | | | | Year | | DSC- IV | Angiosperms | 3+0+0 | 30 | 70 | 100 | | * = | | DSC- | Angiosperms- LAB | 0+0+1 | 15 | 35 | 50 | | | | IV- LAB | | | | | | | | 137 | DSE-02 | Microbiology and | 3+0+0 | 30 | 70 | 100 | | | IV | Out Townson | Phytopathology | | | | | | | Sem. | DSE-02- | Microbiology and | 0+0+1 | 15 | 35 | 50 | | | | LAB | Phytopathology- LAB | | | | | | | | SEC- 02 | Flower Decoration | 0+0+2 | 10 | 40 | 50 | | | | | | | | | | | | | | | 192 | | | | |---------|--------|---------|--|-------|----|-----|-----| | | | DSC-05 | Plant Physiology | 3+0+0 | 20 | 80 | 100 | | | | DSC-05- | Plant Physiology- LAB | 0+0+1 | 10 | 40 | 50 | | | а | LAB | J | | | | | | | | DSE-03 | Plant Metabolism | 3+0+0 | 20 | 80 | 100 | | | | DSE-03- | Plant Metabolism- LAB | 0+0+1 | 10 | 40 | 50 | | | V Sem. | LAB | T talle 1/10 the | | | | | | | V Sem. | DSE-04 | Plant Diseases | 3+0+0 | 20 | 80 | 100 | | | | DSE-04- | Plant Diseases-LAB | 0+0+1 | 10 | 40 | 50 | | | | LAB | (| | | | | | | | SEC-03 | Biofertilizer and | 0+0+2 | 10 | 40 | 50 | | | | one of | Biopesticides | | | | | | Third | | DSC-06 | Plant Pathology | 3+0+0 | 20 | 80 | 100 | | Year | | DSC-06- | Plant Pathology-LAB | 0+0+1 | 10 | 40 | 50 | | i cai | | LAB | 11444 | | | | | | | | DSE-05 | Molecular Biology and | 3+0+0 | 20 | 80 | 100 | | | | D3L-03 | Plant Biotechnology | | | | | | | | DSE-05- | Molecular Biology and | 0+0+1 | 10 | 40 | 50 | | | VI | LAB | Plant Biotechnology- | | | | | | | Sem. | LAD | LAB | | | | | | | | DSE-06 | Economic Botany | 3+0+0 | 20 | 80 | 100 | | | | DSE-06- | Economic Botany-LAB | 0+0+1 | 10 | 40 | 50 | | | | LAB | Economic Botany = | | | | | | | | SEC-04 | Mushroom Culture | 0+0+2 | 10 | 40 | 50 | | | = 1010 | DLC-04 | Technology-Project | | | | 181 | | Fourth | VII | DSC-07 | Ecology and | 3+0+0 | 20 | 80 | 100 | | Year | Sem. | DBC-07 | Phytogeography | | | | | | Bachel | Sciii. | DSC-07- | Ecology and | 0+0+1 | 10 | 40 | 50 | | or of | | LAB | Phytogeography-LAB | | | | | | Honors | | DSE-07 | Instrumentation and | 3+0+0 | 20 | 80 | 100 | | 1101101 | | DOD 07 | Biochemical Technology | | | | | | | | DSE-07- | Instrumentation and | 0+0+1 | 10 | 40 | 50 | | | | LAB | Biochemical | | | | | | | | DITE | Technology-LAB | | | 0.5 | - | | | | DSE-08 | Biosystematics and | 3+0+0 | 20 | 80 | 100 | | | | DSL-00 | Biodiversity | 0 | | | | | | | DSE-08- | Biosystematics and | 0+0+1 | 10 | 40 | 50 | | | | LAB | Biodiversity-LAB | | | | | | | | DSE-09 | Plant Breeding and Seed | 3+0+0 | 20 | 80 | 100 | | | | DSE-09 | Technology | | | | | | | 7 | DSE-09- | Plant Breeding and Seed | 0+0+1 | 10 | 40 | 50 | | | | LAB | Technology-LAB | | | | | | | | | Growth and Stress | 3+0+0 | 20 | 80 | 100 | | | = | GE- | Physiology | | | | | | | | CE | Growth and Stress | 0+0+1 | 10 | 40 | 50 | | | | GE- | To the state of th | 0,0.1 | | | | | | | LAB | Physiology-LAB | 3+0+0 | 20 | 80 | 100 | | | VIII | DSC-08 | Molecular Biology and | 3,0,0 | 20 | 30 | | | | Sem | | Biostatistics | 0+0+1 | 10 | 40 | 50 | | | | DSC-08- | Molecular Biology and | 0+0+1 | 10 | -10 | 30 | | | | | | | | 1 | | |------------------|--------|--|--------------------------|---------|-----|------|-----| | | | and the second s | Biostatistics- LAB | 2.0.0 | 20 | 80 | 100 | | | | DSE-10 | Plant Biotechnology and | 3+0+0 | 20 | 80 | 100 | | | | | Crop Improvement | | 10 | 40 | 50 | | | | DSE-10- | Plant Biotechnology and | 0+0+1 | 10 | 40 | 30 | | | | LAB | Crop Improvement-LAB | | | | 100 | | | | DSE-11 | Applied Botany and | 3+0+0 | 20 | 80 | 100 | | | | DOD | Intellectual Property | | | | | | | | | Right (IPR) | 0.0.1 | 10 | 40 | 50 | | | | DSE-11- | Applied Botany and | 0+0+1 | 10 | 40 | 30 | | | | LAB | Intellectual Property | | | | | | | | | Right (IPR)-LAB | 3+0+0 | 20 | 80 | 100 | | | | DSE-12 | Biochemistry and | 3+0+0 | 20 | 00 | | | | | | Enzymology | 0.0.1 | 10 | 40 | 50 | | | | DSE-12- | Biochemistry and | 0+0+1 | 10 | 40 | 30 | | | | LAB | Enzymology-LAB | | | 90 | 100 | | | | DSE-13 | Bioinformatics and Genet | £ 3+0+0 | 20 | 80 | 100 | | | | | Technology | | | - 10 | 50 | | | | DSE-13- | Bioinformatics and Geneb | 0+0+1 | 10 | 40 | 50 | | | | LAB | Technology-LAB | | | | | | Fourth | VII | DSC-07 | Ecology and | 3+0+0 | 20 | 80 | 100 | | Year | Sem. | DSC-07 | Phytogeography | | | | | | Bachelor | Selli. | DSC-07- | Ecology and | 0+0+1 | 10 | 40 | 50 | | of | | LAB | Phytogeography-LAB | | | . * | | | Honors | | DSE-07 | Research Methodology | 4+0+0 | 20 | 80 | 100 | | with
Research | | DSE-07 | and Ethics | | | | | | Research | | DCE 00 | Biosystematics and | 3+0+0 | 20 | 80 | 100 | | | | DSE-08 | Biodiversity | | | | | | | | DOE 00 | Biosystematics and | 0+0+1 | 10 | 40 | 50 | | | | DSE-08- | • | 0.0.1 | | | | | | - | LAB | Biodiversity-LAB | 3+0+0 | 20 | 80 | 100 | | | | DSE-09 | Plant Breeding and Seed | 31010 | 20 | | | | | | | Technology | 0+0+1 | 10 | 40 | 50 | | | | DSE-09- | Plant Breeding and Seed | 0+0+1 | 10 | 40 | | | | | LAB | Technology-LAB | 3+0+0 | 20 | 80 | 100 | | | | GE- | Growth and Stress | 3+0+0 | 20 | 80 | 100 | | | 0 | | Physiology | 0.0.1 | 10 | 40 | 50 | | | | GE- | Growth and Stress | 0+0+1 | 10 | 40 | 30 | | | | LAB | Physiology-LAB | 2 2 2 | 20 | 00 | 100 | | | VIII | DSC-08 | Molecular Biology and | 3+0+0 | 20 | 80 | 100 | | | Sem | | Biostatistics | | 1.0 | 10 | | | | | DSC-08- | | 0+0+1 | 10 | 40 | 50 | | | | LAB | Biostatistics- LAB | | | | | | | | DSE-10 | Plant Biotechnology and | 3+0+0 | 20 | 80 | 100 | | | | | Crop Improvement | | | | | | | | DSE-10- | Plant Biotechnology and | 0+0+1 | 10 | 40 | 50 | | | | LAB | Crop Improvement-LAB | | | | | | | | Research | | 12 | | | | | | | Project/ | | | | | | | | | Dissertat | 1 | | | | | | 1 | 1 | ion | | | | | | 00000000) 9 • 9 9) **B.Sc.** – V Semester **BOTANY** # 2025-26 | Session: 2025-26 | Program: B.Sc. | |-----------------------------------|---------------------------| | Semester: V | Subject: Botany | | Course type: DSC/ Core course- 05 | Course code: | | Title of DSC/Core Course- 05 | Plant Physiology | | Credits: 03 | Lecture: 45 | | Maximum Marks: 100 | Minimum Passing Marks: 40 | | Title | Plant Physiology | |-------------------|--| | Course outcomes | This course aims to educate student about the mechanism and physiology life processes in plants. It focus on the plant nutrient uptake and translocation, Know about how photosynthesis and respiration occur in plants. Know about how respiration & nitrogen metabolism occur in plants. | | Learning outcomes | Students will be able to understand the various physiological life processes in plants They will also gain about the various uptake and transport mechnisms in plants and are able to coordinate the various processes. They understand the role of various harmones, signaling compounds, thermodynamics and enzyme kinetics. During the course students will gain knowledge about various mechanisms such as channel or transport proteins involved in nutrient uptake in plants. | Gas II #### B. Sc. V Semester (BOTANY) DSC/ Core Course -05 2025-26 | Tial | | | 2025-26 | | |-------|------------------|-------------|--|--| | Title | Plant Physiology | | | | | Units | Lectures | Credit | Syllabus | | | I | 12 | | Plant Water Relation: Diffusion, Permeability Osmosis, Imbibition, Plasmolysis, Osmotic Potentia and Water Potential, Types of Soil water, Water holding capacity, Wilting, Absorption of Water Theories of Ascent of Sap. | | | П | 10 | | Mineral Nutrition and Absorption, Deficiency Symptoms. Transpiration, Stomatal movement, Significance of Transpiration, Factors affecting Transpiration Guttation. | | | Ш | 13 | 3 | Photosynthesis: Photosynthetic apparatus and Pigments, Light reaction, Mechanism of ATP Synthesis. C3 cycle, C4 cycle, CAM pathway of Carbon reduction, Photorespiration, factors affecting Photosynthesis. Respiration: Aerobic and Anaerobic respiration, Glycolysis, Krebs cycle, R.Q., Factors affecting respiration. | | | IV | 10 | | Plant Growth Hormones: Auxin, Gibberellin, Cytokinin, Ethylene and Abscissic acid. Physiology of Flowering, Florigen concept, Photoperiodism and Vernalization, Seed dormancy and Germination, Plant Movement. | | | Total | 45
Lectures | 3
Credit | | | #### **Evaluation Scheme for Theory** | Exam Type | Marks | |---------------|-------| | End Term Exam | 80 | | Internal Exam | 20 | | Total marks | 100 | as of #### B. Sc. V Semester (BOTANY) 2025-26 DSC/ Core Course Practical –05 Plant Physiology-LAB #### Practical Scheme (1 Credit) | 1. | Physiological experiment major | 10 | |----|-------------------------------------|----| | | Physiological experiment minor | 10 | | | Instrumentation based on physiology | 10 | | 4. | Spotting | 10 | | 5. | Viva-voce | 05 | | 6. | Sessional | 05 | Total Marks: 50 aca of #### 2025-26 | Session: 2025-26 | Program: B.Sc. | |-----------------------|---------------------------| | Semester: V | Subject: Botany | | Course type: DSE – 03 | Course code: | | Title of DSE – 03 | Plant Metabolism | | Credits: 03 | Lecture: 45 | | Maximum Marks: 100 | Minimum Passing Marks: 40 | | Plant Metabolism | |---| | This course aims to educate student about the various metabolic pathways. Know about enzymes, its classification and their mode of action. Know about lipid metabolism, structure and functions. Know about Biological nitrogen fixation and nodule formation in plants Study thermodynamics and its application in plant sciences. Study the role of signaling and different signaling pathways. The student will enrich themselves with the phenomenon of metabolism process and their role in plants. Understand the signaling mechanism in plants. Learn about enzymes structure and mechanism of action. Understand about lipid metabolism and nitrogen fixation mechanism. | | | Cocs II #### B. Sc. V Semester (BOTANY) DSE - 03 | | Title | | Plant Metabolism | |-------------------------------|----------|--------|--| | Units | Lectures | Credit | Syllabus | | I | 13 | | Enzymes: Classification of enzyme, Chemical nature and structure of enzymes, Properties of enzymes. Co-enzyme. Mechanism of enzyme action, Different mechanism of enzyme action, inhibition of enzyme action, enzyme kinetics: Michaelis-Menten equation, Biological significance of enzyme. | | II | 12 | 3 | Lipid metabolism: Structure and function of lipids, Fatty acid biosynthesis. Synthesis and breakdown of triglycerides, β-oxidation, glyoxylate cycle, gluconeogenesis. Protein: Structure of Amino acid, Peptide bonds, Structure of protein: Primary, Secondary, Tertiary and Quaternary. | | Ш | 10 | | Nitrogen metabolism: Biological nitrogen fixation, Nodule formation and Nod factors. Mechanism of nitrate uptake and reduction, Nitrate assimilation, Ammonia assimilation and transamination. | | IV | 10 | | Energy Flow: Principals of Thermodynamics, Free energy and Redox reaction Signal Transduction: Receptors and G-Protein, Phospholipid signaling, Calcium-Calmodulin Cascade. | | Total | 45 | 3 | | | and the state of the state of | Lectures | Credit | | #### **Evaluation Scheme for Theory** | Exam Type | Marks | |---------------|-------| | End Term Exam | 80 | | Internal Exam | 20 | | Total marks | 100 | Cos II 3 3 3 #### B. Sc. V Semester (BOTANY) 2025-26 DSE- 03 - Plant metabolism-LAB ## Practical Scheme (1 Credit) | 1. | Enzymology | 10 | |----|---|----| | 2. | Extraction & estimation of proteins, carbohydrates & Fats | 10 | | 3. | Nitrogen fixation/plant growth regulators | 10 | | 4. | Spotting | 10 | | 5. | Viva-voce | 05 | | 6. | Sessional | 05 | **Total Marks: 50** Ecz II #### 2025-26 | Session: 2025-26 | Program: B.Sc. | | |---------------------|---------------------------|--| | Semester: V | Subject: Botany | | | Course type: DSE 04 | Course code: | | | Title of DSE- 04 | Plant Diseases | | | Credits: 3 | Lecture: 45 | | | Maximum Marks: 100 | Minimum Passing Marks: 40 | | | Title | Plant Diseases | | |-------------------|--|--| | Course outcomes | This course aims to know the basic concepts of plant pathology. To know the various diseases, pathogens and mode of action of plant disease. Also known the plant disease control management. | | | Learning outcomes | The students will be able to learnin: They will be understand the basic concept of plant pathogensis. Learn about the various disease name and its causative pathogens. Understand the basic concept of plant disease control management. | | CCC2 PY #### B. Sc. V Semester (BOTANY) 2025-26 DSE - 04 #### **UBSDET508** | Title | | 12 - 18-02 (1 | Plant Diseases | |--------|----------|----------------|---| | Units | Lectures | Credits | Syllabus | | . I 10 | | | Symptomatology, pathogenic and non-pathogenic symptoms caused by fungi, bacteria, virus, nematode, mycoplasma. | | II | 10 | | Diseases due to Fungi: Rust disease, Smut disease, Downy mildew, Leaf blight, Tikka disease. | | III | 15 | 3 | Diseases due to Bacteria: Tundu disease, Citrus canker, Angular leaf spot, Crown gall of stone fruit. Diseases due to Nematodes: Root knot, Ear cockles of wheat. Diseases due to Mycoplasma: Sandal spike, Little leaf of Brinjal. | | IV | 10 | | Principles of plant disease control: Chemical control, Biological control, Plant Quarantine, Principles and methods of plant disease management. | | Total | 45 | 3 | | | | Lectures | Credits | | #### **Evaluation Scheme for Theory** | Exam Type | Marks | |---------------|-------| | End Term Exam | 80 | | Internal Exam | 20 | Ger Il #### B. Sc. V Semester (BOTANY) 2025-26 DSE Practical 04: Plant Diseases -LAB #### Practical Scheme (1 Credit) | 1. | Fungal diseases | 10 | |---------------|-----------------------------|----| | 2. | Bacterial diseases | 10 | | 3. | Mycoplasma/Nematode disease | 10 | | 4. | Spotting | 10 | | <i>5</i> . | Viva-voce | 05 | | 6. | Sessional | 05 | | <i>5</i> . 6. | Viva-voce | C | Total Marks: 50 CCS I # 2025-26 | Session: 2025-26 | Program: B.Sc. | |-----------------------|---------------------------------| | Semester: V | Subject: Botany | | Course type: SEC – 03 | Course code: | | Title of SEC – 03 | Biofertilizer and Biopesticides | | Credits: 02 Credits | Lecture: 30 Lectures | | Maximum Marks: 50 | Minimum Passing Marks: 20 | | Title | Biofertilizer and Biopesticides | | | |-------------------|--|--|--| | Course outcomes | This course aims to educate student about general account about the microbes used as biofertilizer. Know about Mycorrhizal association and its application. Know about the history and concept of biopesticides. | | | | Learning outcomes | The student will enrich themselves with biofertilizer and its importance. Understand the preparation of biofertilizer & agent used in biofertilizer like Cyanobacteria. Learn about Mycorrhizal association and VAM. Understand about the biopesticides and its production. | | | 1308 OF U U Ú U Ù U J J J J 3 #### B. Sc. V Semester (BOTANY) 2025-26 SEC - 03 | | Title | | Biofertilizer and Biopesticides | | |-------|----------|--------|--|--| | Units | Lectures | Credit | Syllabus | | | Ι | 8 | | General account about the microbes used as biofertilizer. Biofertilizers: Introduction, status and scope. Structure and characteristic features of bacterial biofertilizers- Azospirillum, Azotobacter, Bacillus, Pseudomonas, Rhizobium and Frankia. | | | II | 7 | | Cyanobacteria (Blue green algae), Azolla and Anabaena nitrogen fixation, factors affecting growth, blue green algae and Azolla in rice cultivation. | | | III | 8 | 2 | Mycorrhizal association, types of mycorrhizal association, colonization of VAM – isolation and inoculum production of VAM and its influence on growth and yield of crop plants. | | | IV | 7 | | History and concept of biopesticides. Importance, scope and potential of biopesticide. Definitions, concepts and classification of biopesticides, Mass production technology of bio-pesticides. Virulence, pathogenicity and symptoms of entomopathogenic pathogens and nematodes. Uses of biopesticide. | | | Total | 30 | 2 | | | | | Lectures | Credit | | | #### **Evaluation Scheme for Theory** | Exam Type | Marks | |-----------------------|-------| | End Term Exam/Project | 40 | | Internal Exam | 10 | | Total marks | 50 | GCZ P